Estado del arte: metacognición y aprendizaje autorregulado durante la pandemia por covid-19

Autores/as

DOI:

https://doi.org/10.17227/rce.num93-19705

Palabras clave:

aprendizaje, autoaprendizaje, autoregulación, aprendiza en línea, educación virtual, estrategias de aprendizaje

Resumen

En el presente artículo se da cuenta de cómo la pandemia desatada por el covid-19 detonó una transformación en el ámbito educativo, e impulsó a docentes y estudiantes a adaptarse a métodos no convencionales, usualmente sin una preparación adecuada. Esta transición repentina a la enseñanza en línea ha traído una serie de consecuencias educativas y psicológicas, y ha intensificado los niveles de estrés e insatisfacción en ambos grupos. En este contexto, los estudiantes han tenido que autorregular su aprendizaje y asumir responsabilidades como la planificación, el monitoreo y la evaluación de su propio progreso. Sin embargo, en la mayoría de los casos, se han enfrentado a esta nueva realidad sin recibir una orientación clara o instrucciones específicas para integrar estas estrategias en su proceso de aprendizaje. Dada la indiscutible relevancia e interés sobre estos temas, en este artículo se realiza un mapeo científico que permita establecer cuáles fueron las tendencias en las que se enmarcó la investigación mundial sobre metacognición y aprendizaje regulado durante la pandemia. Para ello, se realizó un rastreo en las bases de datos Scopus y Web of Science, y a través de herramientas y técnicas bibliométricas se identificaron las principales líneas o tendencias en estos campos. Según los resultados, las investigaciones se centraron en tres áreas especialmente, la educación en línea, la salud mental e inteligencia emocional y la tecnología y educación. Finalmente, tras el análisis de estas tres categorías, se propone una agenda para futuras investigaciones.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Yasaldez Loaiza, Universidad de Caldas

https://scholar.google.es/citations?user=8wgrE7IAAAAJ&hl=es

Profesor Titular Universidad de Caldas, Profesor Asociado UCM, Manizales, Director Revista Latinoamericana de Estudios Educativos, Líder Grupo de Investigación Maestros y Contextos. Investigador Asociado Minciencias. Ph. D. en Ciencias de la Educación. Posdoctorado en Narrativa y Ciencias. https://orcid.org/0000-0003-4215-2267. yasaldez@ucaldas.edu.co

Pedro Duque, Universidad de Caldas

https://scholar.google.es/citations?user=tEPrd4IAAAAJ&hl=es

Profesor Tiempo completo Departamento de Economía y Administración, Facultad de Ciencias Jurídicas y Sociales, integrante del grupo de investigación en estudios socioeconómicos y problemas organizacionales, Universidad de Caldas. Investigador Asociado Minciencias. Ph. D. en Administración. E-mail: pedro.duque@udecaldas.edu.co ORCID https://orcid.org/0000-0003-4950-8262

Mónica Patiño, Secretaría de Educación Manizales

Profesora de la secretaria de educación de Manizales, Colombia. Magíster en Pedagogía, Universidad Católica de Manizales. https://orcid.org/0000-0003-2491-3237  monica.patino3008@gmail.com

Citas

Ahshan, R. (2021). A framework of implementing strategies for active student engagement in remote/online teaching and learning during the COVID-19 pandemic. Education Sciences, 11(9), 483. https://doi.org/10.3390/educsci11090483

Akyıldız, S. T., & Kaya, V. D. (2021). Examining the prospective teachers’ metacognitive learning strategies and their self-regulated online learning level during emergency remote education period. International Journal of Contemporary Educational Research, 8(4), 144-157. https://doi.org/10.33200/ijcer.912897

Albani, A., Ambrosini, F., Mancini, G., Passini, S., & Biolcati, R. (2023). Trait emotional intelligence and self-regulated learning in university students during the COVID-19 pandemic: The mediation role of intolerance of uncertainty and COVID-19 perceived stress. Personality and Individual Differences, 203, 111999. https://doi.org/10.1016/j.paid.2022.111999

Alserhan, S., Alqahtani, T. M., Yahaya, N., Al-Rahmi, W. M., & Abuhassna, H. (2023). Personal learning environments: Modeling students’ self-regulation enhancement through a learning management system platform. IEEE Access, 11, 5464-5482. https://doi.org/10.1109/ACCESS.2023.3236504

Amin, M. M., & Paiman, N. (2022). University English language teachers’ use of digital platforms for online teaching. International Journal of Emerging Technologies in Learning (iJET), 17(20), 134-148. https://doi.org/10.3991/ijet.v17i20.31421

An, J., Oh, J., & Park, K. (2022). Self-regulated learning strategies for nursing students: A pilot randomized controlled trial. International Journal of Environmental Research and Public Health, 19(15). https://doi.org/10.3390/ijerph19159058

Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Aria, M., Misuraca, M., & Spano, M. (2020). Mapping the evolution of social research and data science on 30 years of social indicators research. Social Indicators Research, 149(3), 803-831. https://doi.org/10.1007/s11205-020-02281-3

Cui, Y. (2021). Self-efficacy for self-regulated learning and Chinese students’ intention to use online learning in COVID-19: A moderated mediation model. International Journal of Information and Education Technology (iJET), 11(11), 532-537. https://doi.org/10.18178/ijiet.2021.11.11.1561

Dai, W., Li, Z., & Jia, N. (2022). Self-regulated learning, online mathematics learning engagement, and perceived academic control among Chinese junior high school students during the COVID-19 pandemic: A latent profile analysis and mediation analysis. Frontiers in Psychology, 13, 1042843. https://doi.org/10.3389/fpsyg.2022.1042843

Demirdogen, E. S., Orak, I., Cansever, O. M., Warikoo, N., & Yavuz, M. (2022). The associations between metacognition problems, mindfulness, and internalizing symptoms in university students quarantined due to COVID-19 in Turkey. Perspectives in Psychiatric Care, 58(2), 560-567. https://doi.org/10.1111/ppc.13027

Di Vaio, A., Palladino, R., Pezzi, A., & Kalisz, D. E. (2021). The role of digital innovation in knowledge management systems: A systematic literature review. Journal of Business Research, 123, 220-231. https://doi.org/10.1016/j.jbusres.2020.09.042

Donthu, N., Kumar, S., & Pattnaik, D. (2020). Forty-five years of Journal of Business Research: A bibliometric analysis. Journal of Business Research, 109, 1-14. https://doi.org/10.1016/j.jbusres.2019.10.039

Duque, P., & Oliva, E. J. D. (2022). Tendencias emergentes en la literatura sobre el compromiso del cliente: un análisis bibliométrico. Estudios Gerenciales, 38(162), 120-132. https://doi.org/10.18046/j.estger.2022.162.4528

Duque, P., Meza, O. E., Giraldo, D., & Barreto, K. (2021). Economía social y economía solidaria: un análisis bibliométrico y revisión de literatura. Revesco: Revista de Estudios Cooperativos, 138, e75566. https://doi.org/10.5209/reve.75566

Duque, P., Trejos, D., Hoyos, O., & Mesa, J. C. C. (2021). Finanzas corporativas y sostenibilidad: un análisis bibliométrico e identificación de tendencias. Semestre Económico, 24(56), 25-51. https://doi.org/10.22395/seec.v24n56a1

Eradze, M., Bardone, E., & Dipace, A. (2021). Theorising on COVID-19 educational emergency: Magnifying glasses for the field of educational technology. Learning, Media and Technology, 46(4), 404-419. https://doi.org/10.1080/17439884.2021.1961802

González, C. (2022). Análisis de un entorno tecnológico diseñado durante la pandemia para fomentar la autorregulación del aprendizaje en educación preuniversitaria. Edutec: Revista Electrónica de Tecnología Educativa, (80). https://doi.org/10.21556/edutec.2022.80.251

Barbosa Camacho, F. J., et al. (2022). Depression, anxiety, and academic performance in COVID-19: A cross-sectional study. BMC Psychiatry, 22(1), 1-10. https://doi.org/10.1186/s12888-022-04062-3

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008

Calamlam, J. M., Ferran, F., & Macabali, L. G. (2022). Perception on research methods course’s online environment and self-regulated learning during the COVID-19 pandemic. E-Learning and Digital Media, 19(1), 93-119. https://doi.org/10.1177/20427530211027722

Callender, A. A., Franco-Watkins, A. M., & Roberts, A. S. (2016). Improving metacognition in the classroom through instruction, training, and feedback. Metacognition and Learning, 11(2), 215-235. https://doi.org/10.1007/s11409-015-9142-6

Castellanos, J. D. G., Hurtado, P. L. D., Barahona, L., & Peña, E. (2022). Marco de referencia y tendencias de investigación de economía colaborativa. Revista En-contexto, 10(16), 267-292. https://doi.org/10.53995/23463279.1159

Chen, C. (2017). Science mapping: A systematic review of the literature. Journal of Data and Information Science, 2(2), 1-40. https://par.nsf.gov/servlets/purl/10063059

Chick, R. C., Clifton, G. T., Peace, K. M., Propper, B. W., Hale, D. F., Alseidi, A. A., & Vreeland, T. J. (2020). Using technology to maintain the education of residents during the COVID-19 pandemic. Journal of Surgical Education, 77(4), 729-732. https://doi.org/10.1016/j.jsurg.2020.03.018

Christopoulos, A., & Sprangers, P. (2021). Integration of educational technology during the COVID-19 pandemic: An analysis of teacher and student receptions. Cogent Education, 8(1), 1964690. https://doi.org/10.1080/2331186X.2021.1964690

Cramarenco, R. E., Burcǎ-Voicu, M. I., & Dabija, D. C. (2023). Student perceptions of online education and digital technologies during the COVID-19 pandemic.Grisales, A., Robledo, S., & Zuluaga, M. (2023). Topic modeling: Perspectives from a literature review. IEEE Access, 11, 4066-4078. https://doi.org/10.1109/ACCESS.2022.3232939

Gupta, P., & Bamel, U. (2023). Need for metacognition and critical thinking in the e-learning ecosystem: The new normal in post COVID era. Global Business and Organizational Excellence, 43(1), 104-120. https://doi.org/10.1002/joe.22208

Hadwin, A. F., Sukhawathanakul, P., Rostampour, R., & Bahena-Olivares, L. M. (2022). Do self-regulated learning practices and intervention mitigate the impact of academic challenges and COVID-19 distress on academic performance during online learning? Frontiers in Psychology, 13, 813529. https://doi.org/10.3389/fpsyg.2022.813529

Herman, I., Melancon, G., & Marshall, M. S. (2000). Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics, 6(1), 24-43. https://doi.org/10.1109/2945.841119

He, W., Zhao, L., & Su, Y. S. (2022). Effects of online self-regulated learning on learning ineffectiveness in the context of COVID-19. The International Review of Research in Open and Distributed Learning, 23(2), 25-43. https://doi.org/10.19173/irrodl.v23i2.5775

Holzer, J., Lüftenegger, M., Korlat, S., Pelikan, E., Salmela-Aro, K., Spiel, C., & Schober, B. (2021). Higher education in times of COVID-19: University students’ basic need satisfaction, self-regulated learning, and well-being. AERA Open, 7, 23328584211003164. https://doi.org/10.1177/23328584211003164

Homolak, J., Kodvanj, I., & Virag, D. (2020). Preliminary analysis of COVID-19 academic information patterns: A call for open science in the times of closed borders. Scientometrics, 124(3), 2687-2701. https://doi.org/10.1007/s11192-020-03587-2

Hong, J. C., Lee, Y.-F., & Ye, J.-H. (2021). Procrastination predicts online self-regulated learning and online learning ineffectiveness during the coronavirus lockdown. Personality and Individual Differences, 174, 110673. https://doi.org/10.1016/j.paid.2021.110673

Hoyos, O., Castro Duque, M., León, N. T., Salazar, D. T., Montoya Restrepo, L. A., Montoya Restrepo, I. A., & Duque, P. (2023). Gobierno corporativo y desarrollo sostenible: un análisis bibliométrico. Revista CEA, 9(19), e2190-e2190. https://doi.org/10.22430/24223182.2190

Hoyos, O., Duque, P., García, D., & Giraldo, S. (2022). Producción científica sobre economía verde y sostenibilidad: una revisión de la investigación mundial. Faces: Revista de la Facultad de Ciencias Económicas y Sociales, 30(2), 77-99. https://doi.org/10.18359/rfce.5846

Huntley, C., Young, B., Tudur Smith, C., Jha, V., & Fisher, P. (2022). Testing times: The association of intolerance of uncertainty and metacognitive beliefs to test anxiety in college students. BMC Psychology, 10(1), 6. https://doi.org/10.1186/s40359-021-00710-7

Hurtado, P. D., & Ortiz, D. O. (2022). Perspectivas y tendencias de investigación en emprendimiento social. Desarrollo Gerencial, 14(1), 1-26. https://doi.org/10.17081/dege.14.1.5082

Hurtado, P. L. D., Castellanos, J. D. G., & Giraldo, M. F. (2023). Análisis de la red de investigaciones sobre innovación social. Revista de Ciencias Sociales, 29(4), 230-246. https://doi.org/10.31876/rcs.v29i4.41250

Iacolino, C., Cervellione, B., Isgrò, R., Lombardo, E. M. C., Ferracane, G., Barattucci, M., & Ramaci, T. (2023). The role of emotional intelligence and metacognition in teachers’ stress during pandemic remote working: A moderated mediation model. European Journal of Investigation in Health, Psychology and Education, 13(1), 81-95. https://doi.org/10.3390/ejihpe13010006

Ihm, L., Zhang, H., Van Vijfeijken, A., & Waugh, M. G. (2021). Impacts of the COVID-19 pandemic on the health of university students. The International Journal of Health Planning and Management, 36(3), 618-627. https://doi.org/10.1002/hpm.3145

Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One, 9(6), e98679. https://doi.org/10.1371/journal.pone.0098679

Jehi, T., Khan, R., Dos Santos, H., & Majzoub, N. (2022). Effect of COVID-19 outbreak on anxiety among students of higher education: A review of literature. Current Psychology, 42, 17475-17489. https://doi.org/10.1007/s12144-021-02587-6

Jia, M. (2022). The influence of distance learning during COVID-19 pandemic on student’s self-regulated learning in higher education: A qualitative study. En Proceedings of the 5th International Conference on Digital Technology in Education (pp. 47-52). Association for Computing Machinery. https://doi.org/10.1145/3488466.3488492

Lee, D., Watson, S. L., & Watson, W. R. (2020). The relationships between self-efficacy, task value, and self-regulated learning strategies in massive open online courses. The International Review of Research in Open and Distributed Learning, 21(1), 23-39. https://doi.org/10.19173/irrodl.v20i5.4389

Leydesdorff, L. (1987). Various methods for the mapping of science. Scientometrics, 11(5), 295-324. https://doi.org/10.1007/BF02279351

Loaiza, Y., Olga, P. M., & Duque, P. (2022). What is new in metacognition research? Answers from current literature. Educación y Educadores, 25(3), e2535. https://doi.org/10.5294/edu.2022.25.3.5

Maor, R., Levi, R., Mevarech, Z., Paz-Baruch, N., Grinshpan, N., Milman, A., Shlomo, S., & Zion, M. (2023). Difference between zoom-based online versus classroom lesson plan performances in creativity and metacognition during COVID-19 pandemic. Learning Environments Research, 26, 803-822. https://doi.org/10.1007/s10984-023-09455-z

Maqsood, A., Abbas, J., Rehman, G., & Mubeen, R. (2021). The paradigm shift for educational system continuance in the advent of COVID-19 pandemic: Mental health challenges and reflections. Current Research in Behavioral Sciences, 2, 100011. https://doi.org/10.1016/j.crbeha.2020.100011

Martín Martín, A., Orduna Malea, E., Thelwall, M., & Delgado López Cózar, E. (2018). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics, 12(4), 1160-1177. https://doi.org/10.1016/j.joi.2018.09.002

Mathieu, B., Sebastien, H., & Mathieu, J. (2009). Gephi: An open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media. https://gephi.org/users/publications/

Meier, F. (2020). Social network analysis as a tool for data analysis and visualization in information behaviour and interactive information retrieval research. En Proceedings of the 2020 Conference on Human Information Interaction and Retrieval (pp. 477-480). Association for Computing Machinery. https://doi.org/10.1145/3343413.3378018

Mogollón, J. O., Andrade, J. M. M., & Duque, P. (2022). Responsabilidad social empresarial y América Latina: una revisión de literatura. Equidad y Desarrollo, 1(40), 3. https://doi.org/10.19052/eq.vol1.iss40.3

Nguyen, V. T. T., & Chen, H. L. (2023). Examining impacts of information system success and perceived stress on students’ self-regulated learning mediated by intrinsic motivation in online learning environments: second-order structural equation modelling analyses. Education and Information Technologies, 28, 12945-12968. https://doi.org/10.1007/s10639-023-11685-w

Noyons, E. C. M., Moed, H. F., & Van Raan, A. F. J. (1999). Integrating research performance analysis and science mapping. Scientometrics, 46(3), 591-604. https://doi.org/10.1007/BF02459614

Nuankaew, P. (2022). Self-regulated learning model in educational data mining. International Journal of Emerging Technologies in Learning (iJET), 17(17), 4-27. https://doi.org/10.3991/ijet.v17i17.23623

Pelikan, E. R., Lüftenegger, M., Holzer, J., Korlat, S., Spiel, C., & Schober, B. (2021). Learning during COVID-19: The role of self-regulated learning, motivation, and procrastination for perceived competence. Zeitschrift für Erziehungswissenschaft: ZfE, 24(2), 393-418. https://doi.org/10.1007/s11618-021-01002-xPérez, R., & Torres Delgado, G. (2023). Evaluation-self-regulated learning in higher education in a digital environment under vulnerable conditions and confinement due to COVID-19: Self-regulated learning in a digital environment under vulnerable conditions. En Proceedings of the 6th International Conference on Digital Technology in Education (pp. 137-144). Association for Computing Machinery. https://doi.org/10.1145/3568739.3568764

Pirrone, C., Di Corrado, D., Privitera, A., Castellano, S., & Varrasi, S. (2022). Students’ mathematics anxiety at distance and in-person learning conditions during COVID-19 pandemic: Are there any differences? An exploratory study. Education Sciences, 12(6), 379. https://doi.org/10.3390/educsci12060379

Pogorskiy, E., & Beckmann, J. F. (2023). From procrastination to engagement? An experimental exploration of the effects of an adaptive virtual assistant on self-regulation in online learning. Computers and Education: Artificial Intelligence, 4, 100111. https://doi.org/10.1016/j.caeai.2022.100111

Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications, 9(1), 12. https://doi.org/10.3390/publications9010012

Raza, A., & Hasib, M. (2023). Digital transformation of education toward successful internships: A methodology developed over seven years and tested during COVID-19. IEEE Transactions on Education, 66(3), 244-253. https://doi.org/10.1109/TE.2022.3221842

Reimers, F. M., Schleicher, A., OECD, Meroni, C., Milano, A., & Metropolitana, C. (2020). A framework to guide an education response to the COVID-19 pandemic of 2020. Organisation for Economic Co-operation and Development (OECD). https://iccittadichiari.edu.it/wp-content/uploads/2020/07/COVID19_LG-settore-istruzione_OCSE_maggio-2020_ESTRATTO.pdf

Restrepo, C. A. D., Patiño, M., Duque, P., Cervantes, L. S. C., & Rivera, A. F. (2023). Financial performance in small and medium-sized enterprises (SMEs): A bibliometric analysis of scientific production. Apuntes del Cenes, 42(75), 45-80. https://doi.org/10.19053/01203053.v42.n75.2023.14714

Robledo, S., Duque, P., & Aguirre, A. M. G. (2023). Word of mouth marketing: A scientometric analysis. Journal of Scientometric Research, 11(3), 436-446. https://doi.org/10.5530/jscires.11.3.47

Robledo, S., Eider, V. J., Darío, D. M. N., & Duque Uribe, V. (2022). Networking as an entrepreneurial marketing tool: The link between effectuation and word of mouth. Journal of Research in Marketing and Entrepreneurship, 25(2), 270-285. https://doi.org/10.1108/JRME-08-2020-0112

Robledo, S., Zuluaga, M., Valencia Hernández, L. A., Arbeláez Echeverri, O. A. E., Duque, P., & Alzate Cardona, J. D. (2022). Tree of science with Scopus: A shiny application. Issues in Science and Technology Librarianship, (100). https://doi.org/10.29173/istl2698

Rodríguez, A. M. B., Hurtado, P. L. D., & Villegas, V. L. M. (2022). Neurociencia y comportamiento del consumidor: análisis estadístico de su evolución y tendencias en su investigación. Cuadernos Latinoamericanos de Administración, 18(35). https://doi.org/10.18270/cuaderlam.v18i35.3855

Sáez-Delgado, F., López-Angulo, Y., Nicole Arias-Roa, N., & Mella-Norambuena, J. (2022). Revisión sistemática sobre autorregulación. Perspectiva Educacional, 61(2). http://dx.doi.org/10.4151/07189729-vol.61-iss.2-art.1247

Santamaría, M. D., Mondragon, N. I., Santxo, N. B., & Ozamiz-Etxebarria, N. (2021). Teacher stress, anxiety and depression at the beginning of the academic year during the COVID-19 pandemic. Global Mental Health, 8, e14. https://doi.org/10.1017/gmh.2021.14

Shahana, A. M., & Parthiban, A. S. M. (2021). The opportunities of uncertainties: Flexibility and adaptation needed in current climate. (ICT and Engineering) (vol. II). Lulu Publication. https://play.google.com/store/books/details?id=hAM1EAAAQBAJ

Stecuła, K., & Wolniak, R. (2022). Influence of COVID-19 pandemic on dissemination of innovative e-learning tools in higher education in Poland. Journal of Open Innovation: Technology, Market, and Complexity, 8(2), 89. https://doi.org/10.3390/joitmc8020089

Sutarni, N., Ramdhany, M. A., Hufad, A., & Kurniawan, E. (2021). Self-regulated learning and digital learning environment: Its effect on academic achievement during the pandemic. Jurnal Cakrawala Pendidikan, 40(2), 374-388. https://doi.org/10.21831/cp.v40i2.40718

Tekkol, İ. A., & Demirel, M. (2018). An investigation of self-directed learning skills of undergraduate students. Frontiers in Psychology, 9, 2324. https://doi.org/10.3389/fpsyg.2018.02324

Torres, D. A., Rodríguez, A. M. B., & Gutiérrez, P. A. E. (2022). COVID-19 in business, management, and economics: Research perspectives and bibliometric analysis. BAR: Brazilian Administration Review, 19(3), e220016. https://doi.org/10.1590/1807-7692bar2022220016

Valencia Hernández, D. S., Robledo, S., Pinilla, R., Duque Méndez, N. D., & Olivar Tost, G. (2020). SAP algorithm for citation analysis: An improvement to Tree of Science. Ingeniería e Investigación, 40(1), 45-49. https://doi.org/10.15446/ing.investig.v40n1.77718

Virtanen, P., Niemi, H. M., & Nevgi, A. (2017). Active learning and self-regulation enhance student teachers’ professional competences. Australian Journal of Teacher Education, 42(12), 1. https://doi.org/10.14221/ajte.2017v42n12.1

Wang, J. K., Xue, H. Q., & Wu, X. F. (2023). Mental health and academic achievement among Chinese adolescents during COVID-19 pandemic: The mediating role of self-regulation learning. Social Psychology of Education: An International Journal, 26, 1001-1015. https://doi.org/10.1007/s11218-023-09772-4

Wang, F., Meng, F., Liu, S., Wang, S., Pan, L., & Lin, Z. (2022). Understanding learners’ metacognition of online teacher feedback amid COVID-19: A case study in a university livestream instruction context. Frontiers in Psychology, 13, 861845. https://doi.org/10.3389/fpsyg.2022.861845

Weight, K., & Bond, J. B. (2022). Metacognition as a mental health support strategy for students with anxiety. Journal of Education, 202(4), 452-462. https://doi.org/10.1177/0022057421996242

Xu, L., Duan, P., Padua, S. A., & Li, C. (2022). The impact of self-regulated learning strategies on academic performance for online learning during COVID-19. Frontiers in Psychology, 13, 1047680. https://doi.org/10.3389/fpsyg.2022.1047680

Yu, H., & Zhou, J. (2022). Social support and online self-regulated learning during the COVID-19 pandemic. Asia Pacific Journal of Education, 1-15. https://doi.org/10.1080/02188791.2022.2122021

Zalat, M. M., Hamed, M. S., & Bolbol, S. A. (2021). The experiences, challenges, and acceptance of e-learning as a tool for teaching during the COVID-19 pandemic among university medical staff. PLOS ONE, 16(3), e0248758. https://doi.org/10.1371/journal.pone.0248758

Zhang, T., Taub, M., & Chen, Z. (2021). Measuring the impact of COVID-19 induced campus closure on student self-regulated learning in physics online learning modules. En LAK21: 11th International Learning Analytics and Knowledge Conference (pp. 110-120). Association for Computing Machinery. https://doi.org/10.1145/3448139.3448150

Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. American Educational Research Journal, 45(1), 166-183. https://doi.org/10.3102/0002831207312909

Descargas

Publicado

2024-10-01

Cómo citar

Loaiza, Y., Duque, P., & Patiño, M. (2024). Estado del arte: metacognición y aprendizaje autorregulado durante la pandemia por covid-19. Revista Colombiana De Educación, (93), 218–239. https://doi.org/10.17227/rce.num93-19705

Número

Sección

Dossier: Metacognición

Métricas PlumX