Resolución de problemas matemáticos, representación y ansiedad matemática en futuros docentes de educación primaria
Resumen
La resolución de problemas y la representación matemática son habilidades esenciales para cualquier persona que estudie matemáticas. Por lo tanto, es fundamental desarrollar estas dos habilidades en el aprendizaje de matemáticas, especialmente en la escuela primaria. Sin embargo, los desafíos en este campo destacan las deficiencias en las habilidades de resolución de problemas y representación matemática de los futuros profesores de primaria. La suposición del investigador es que la ansiedad matemática es un factor que contribuye a las bajas habilidades de resolución de problemas y representación en los futuros docentes de primaria. Para probar esta suposición, el objetivo de este estudio fue determinar la relación entre las habilidades de resolución de problemas y representación matemática y la ansiedad académica de los futuros profesores de primaria. El método de investigación utilizado es cuantitativo con un enfoque correlacional. La muestra de la investigación consistió en 62 estudiantes de formación docente matriculados en el programa de formación de maestros en la Universidad X. Los datos se recopilaron mediante preguntas de exámenes matemáticos, cuestionarios de ansiedad matemática y entrevistas no estructuradas con varios participantes como datos adicionales. El método de análisis de datos utilizado fue la regresión lineal múltiple para examinar la relación entre las variables.
Citas
Akpan, A. U. (2022). An Assessment of Causes and Effects of Mathematics Anxiety Among Students of Public Secondary Schools in Uyo Local Government Area. Multidisciplinary Peer Reviewed Journal ISSN, 8(2). https://dx.doi.org/10.17605/OSF.IO/TVC7J
Bikić, N., Maričić, S. M., & Pikula, M. (2016). The effects of differentiation of content in problem-solving in learning geometry in secondary school. Eurasia Journal of Mathematics, Science and Technology Education, 5(2), 15–23. https://doi.org/10.12973/eurasia.2016.02304a DOI: https://doi.org/10.12973/eurasia.2016.02304a
Bjälkebring, P. (2019). Math Anxiety at the University: What Forms of Teaching and Learning Statistics in Higher Education Can Help Students with Math Anxiety? Frontiers in Education, 4. https://doi.org/10.3389/feduc.2019.00030 DOI: https://doi.org/10.3389/feduc.2019.00030
Chang, J. Y., Cheng, M. F., Lin, S. Y., & Lin, J. L. (2021). Exploring students’ translation performance and use of intermediary representations among multiple representations: Example from torque and rotation. Teaching and Teacher Education, 11(4), 677–689. https://doi.org/10.1016/j.tate.2020.103209 DOI: https://doi.org/10.1016/j.tate.2020.103209
Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. In Trends in Neuroscience and Education. National Chamber Foundation. https://doi.org/10.1016/j.tine.2013.12.001 DOI: https://doi.org/10.1016/j.tine.2013.12.001
Cresswell, J. W. (2012). Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 4th Edition. Pearson.
Croft, T., Kouvela, E., & Hernandez-Martinez, P. (2018). This is what you need to be learning: an analysis of messages received by first-year mathematics students during their transition to university. Math Ed Res J, 30(1), 165–183. https://doi.org/10.1007/s13394-017-0226-2 DOI: https://doi.org/10.1007/s13394-017-0226-2
de Walle, J. A. Van, Karp, K. S., & Bay-Williams, J. M. (2016). Elementary and middle school mathematics: teaching developmentally (9th ed.). Pearson Education Limited.
Deliyianni, E., Gagatsis, A., Elia, I., & Panaoura, A. (2016). Representational Flexibility and Problem-Solving Ability in Fraction and Decimal Number Addition: A Structural Model. International Journal of Science and Mathematics Education, 17(2), 342–367. https://doi.org/10.1007/s10763-015-9625-6 DOI: https://doi.org/10.1007/s10763-015-9625-6
Eggen, P. D., & Kauchak, D. P. (2016). Educational psychology: Windows on Classrooms. In Annual review of psychology (10th ed., Vol. 4). Pearson Education Limited. https://doi.org/10.1146/annurev.ps.04.020153.002131 DOI: https://doi.org/10.1146/annurev.ps.04.020153.002131
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (Eighth Edition). Annabel Ainscow. www.cengage.com/highered
Hekimoglu, S., & Sloan, M. (2015). A Compendium of Views on the NCTM Standards. Mathematics Educator, 15(1), 35–43. https://files.eric.ed.gov/fulltext/EJ845846.pdf
Istikomah, E., & Wahyuni, A. (2018). Students’ Mathematics Anxiety on the Use of Technology in Mathematics Learning. Journal of Research and Advances in Mathematics Education, 3(2), 69–77. http://journals.ums.ac.id/index.php/jramathedu DOI: https://doi.org/10.23917/jramathedu.v3i2.6364
Jennings, M. D. (2018). Gap analysis: Concepts, methods, and recent results. Landscape Ecology, 4(3), 56–78. https://doi.org/10.1023/A:1008184408300 DOI: https://doi.org/10.1023/A:1008184408300
Keller, B. A., Hart, E. W., & Martin, W. G. (2001). Illuminating NCTM’s Principles and Standards for School Mathematics. School Science and Mathematics, 101(6), 292–304. https://doi.org/10.1111/j.1949-8594.2001.tb17960.x DOI: https://doi.org/10.1111/j.1949-8594.2001.tb17960.x
King, A. (2014). Mathematical Explorations: Freshwater Scarcity a Proportional Representation. NCTM, 20(3), 152–157. https://doi.org/10.5951/mathteacmiddscho.20.3.0178 DOI: https://doi.org/10.5951/mathteacmiddscho.20.3.0178
Lai, Y., Zhu, X., Chen, Y., & Li, Y. (2015). Effects of mathematics anxiety and mathematical metacognition on word problem solving in children with and without mathematical learning difficulties. PLoS ONE, 10(6), 1–19. https://doi.org/10.1371/journal.pone.0130570 DOI: https://doi.org/10.1371/journal.pone.0130570
Lesh, R., & Doerr, M. H. (2003). Beyond Constructivism Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching. Mathematical Thinking and Learning, 5(2-3), 211-233. http://dx.doi.org/10.1080/10986065.2003.9680000 DOI: https://doi.org/10.1207/S15327833MTL0502&3_05
Mainali, B. (2021). Representation in teaching and learning mathematics. International Journal of Education in Mathematics, Science and Technology, 15(3), 56–78. https://doi.org/10.46328/ijemst.1111 DOI: https://doi.org/10.46328/ijemst.1111
Maulyda, M. A., Rahmatih, A. N., Gunawan, G., Hidayati, V. R., & Erfan, M. (2020). Retroactive Thinking Interference of Grade VI Students: A Study on the Topics of PISA Literacy Lessons. Journal of Physics: Conference Series, 1471(1), 1–7. https://doi.org/10.1088/1742-6596/1471/1/012037 DOI: https://doi.org/10.1088/1742-6596/1471/1/012037
Morphew, J. W., Gladding, G. E., & Mestre, J. P. (2020). Effect of presentation style and problem-solving attempts on metacognition and learning from solution videos. Physical Review Physics Education Research, 16(1), 10104. https://doi.org/10.1103/PhysRevPhysEducRes.16.010104 DOI: https://doi.org/10.1103/PhysRevPhysEducRes.16.010104
Muhaimin, M., Kartono, K., & Astuti, B. (2019). An Analysis of Sociomathematical Norms of Elementary School Students Through Collaborative Problem-Solving Learning. Journal of Primary Education, 12(3), 677–687. https://doi.org/10.15294/jpe.v8i1.25232
NCTM. (2000). Principles and standards for school mathematics. Reston, VA: The National Council of Teachers Mathematics, Inc.
Nistal, A. A., Dooren, W. Van, & Verschaffel, L. (2012). What counts as a flexible representational choice? An evaluation of students’ representational choices to solve linear function problems. Instructional Science, 12(3), 440–476. https://doi.org/10.1007/s11251-011-9199-9 DOI: https://doi.org/10.1007/s11251-011-9199-9
Pantaleon, K. V., Juniati, D., & Lukito, A. (2018). The oral mathematical communication profile of prospective mathematics teacher in mathematics proving. Journal of Physics: Conference Series, 1108, 1–6. https://doi.org/10.1088/1742-6596/1108/1/012008 DOI: https://doi.org/10.1088/1742-6596/1108/1/012008
Polák, P., Ka, R. D. Č., & Anský, J. Ž. I. T. Ň. (2014). Capability assessment of measuring equipment using statistic method. Management Systems in Production Engineering, 4(16), 184–186. https://doi.org/10.12914/MSPE
Reuter, T., Schnotz, W., & Rasch, R. (2015). Drawings and Tables as Cognitive Tools for Solving Non-Routine Word Problems in Primary School. American Journal of Educational Research, 3(11), 1387–1397. https://10.12691/education-3-11-7
Rohid, N., Suryaman, S., & Rusmawati, R. D. (2019). Students’ Mathematical Communication Skills (MCS) in Solving Mathematics Problems: A Case in Indonesian Context. Anatolian Journal of Education, 4(2), 19–30. https://doi.org/10.29333/aje.2019.423a DOI: https://doi.org/10.29333/aje.2019.423a
Runco, Mark. A. (2011). Problem Finding, Problem Solving & Creativity (1st ed.). Ablex Publishing Corporate.
Sari, D. P., & Darhim. (2020). Implementation of react strategy to develop mathematical representation, reasoning, and disposition ability. Journal on Mathematics Education, 11(1), 145–156. https://doi.org/10.22342/jme.11.1.7806.145-156 DOI: https://doi.org/10.22342/jme.11.1.7806.145-156
Sian, K. J., Shahrill, M., Yusof, N., Ling, G. C. L., & Roslan, R. (2016). Graphic Organizer in Action: Solving Secondary Mathematics Word Problems. Journal on Mathematics Education, 7(2). https://doi.org/10.22342/jme.7.2.3546.83-90 DOI: https://doi.org/10.22342/jme.7.2.3546.83-90
Slavin, R. E. (2018). Educational psychology. In Psychological Bulletin (Vol. 25, Issue 7). Pearson. https://doi.org/10.1037/h0074121 DOI: https://doi.org/10.1037/h0074121
Sukoriyanto, S., Nusantara, T., Subanji, S., & Chandra, T. D. (2016). Students’ Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya. International Education Studies, 9(2), 11. https://doi.org/10.5539/ies.v9n2p11 DOI: https://doi.org/10.5539/ies.v9n2p11
Sumaji, Sa’Dijah, C., Susiswo, & Sisworo. (2019). Students’ problem in communicating mathematical problem solving of Geometry. IOP Conference Series: Earth and Environmental Science, 243(1). https://doi.org/10.1088/1755-1315/243/1/012128 DOI: https://doi.org/10.1088/1755-1315/243/1/012128
Taub, M. (2020). The agency effect: The impact of student agency on learning, emotions, and problem-solving behaviors in a game-based learning environment. Computers and Education, 147. https://doi.org/10.1016/j.compedu.2019.103781 DOI: https://doi.org/10.1016/j.compedu.2019.103781
Tello, E. A. (2010). Making Mathematics Word Problems Reliable Measures of Student Mathematics Abilities. Journal of Mathematics Education, 3(1), 15–26.
Thomson, R., & Østergaard, J. (2021). Open-ended transitions to adulthood: Metaphorical thinking for times of stasis. The Sociological Review, 69(2), 434–450. https://doi.org/10.1177/0038026120970346 DOI: https://doi.org/10.1177/0038026120970346
Van Garderen, D., & Montague, M. (2003). Visual-Spatial Representation, Mathematical Problem Solving, and Students of Varying Abilities. Learning Disabilities Research and Practice, 18(4), 246–254. https://doi.org/10.1111/1540-5826.00079 DOI: https://doi.org/10.1111/1540-5826.00079
Wahid, S. N. S., Yusof, Y., & Razak, M. R. (2014a). Math Anxiety among Students in Higher Education Level. Procedia - Social and Behavioral Sciences, 123, 232–237. https://doi.org/10.1016/j.sbspro.2014.01.1419 DOI: https://doi.org/10.1016/j.sbspro.2014.01.1419
Descargas
Derechos de autor 2025 Revista Colombiana de Educación

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.