Metacognición en tareas de modelado matemático con estudiantes de Educación Primaria en Chile
Resumen
Este artículo de investigación presenta la caracterización de las estrategias metacognitivas y experiencias socioemocionales que activan los estudiantes de educación primaria cuando resuelven tareas de modelado matemático. Se utilizó una metodología cualitativa con estudio de casos múltiple de alcance exploratorio. Se seleccionaron dos grupos de trabajo de 1° y 3° grado para observar en profundidad las estrategias y experiencias metacognitivas que activan los niños cuando resuelven tareas mediante un trabajo colaborativo grupal. Se usaron grabaciones de video mientras resolvían las tareas de modelado y se codificaron en Atlas ti. Para el análisis, se utilizaron sistemas de categorías en las estrategias metacognitivas y experiencias socioemocionales y se cruzaron con las fases del ciclo de modelado. Como resultados del análisis los niños de 1° grado activaron las estrategias de proceder en las primeras etapas del ciclo de modelado y los de 3°grado las estrategias de planificar y monitorear en las fases de simplificación, matematización y trabajo matemático. Las mayores sensaciones de agrado, desánimo y descontrol, se generan en estas fases. Ambos grupos regulan sus reacciones emocionales para persistir en la tarea, controlándose para evitar distracciones del equipo. Las estrategias de regular se activaron en la fase de matematización para ambos grupos y en el trabajo matemático en el grupo de 3°grado y, las estrategias de evaluar en la interpretación de soluciones y validación del modelo para ambos grupos. En el grupo de 3° grado emergen sensaciones de agrado y desconcierto cuando proyectan el modelo detectando fortalezas y limitaciones.
Citas
Aravena, M. (2016). Modelación Matemática en Chile. En J. Arrieta y L. Díaz (Eds.). Investigaciones Latinoamericanas en modelación matemática. Barcelona. Gedisa
Baten, E., Praet, M. y Desoete, A. (2017). The relevance and efficacy of metacognition for instructional design in the domain of mathematics. ZDM Mathematics Education 49, 613–623 https://doi.org/10.1007/s11858-017-0851-y DOI: https://doi.org/10.1007/s11858-017-0851-y
Berger, J.L. (2009). The Influence of Achievement Goals on Metacognitive Processes in Math Problem Solving. Journal of Cognitive Education and Psychology. 8 (2), 165-181. doi:10.1891/1945-8959.8.2.165. DOI: https://doi.org/10.1891/1945-8959.8.2.165
Berger, J. L. y Büchel, F. P. (2013). L’apprentissage autorégulé: perspectives théoriques et recherches empiriques. Nice: Ovadia.
Blum, W. (2011). Can Modelling Be Taught and Learnt? Some Answers from Empirical Research (pp. 15–30). https://doi.org/10.1007/978-94-007-0910-2_3 DOI: https://doi.org/10.1007/978-94-007-0910-2_3
Blum, W. y Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68. https://doi.org/10.1007/bf00302716. DOI: https://doi.org/10.1007/BF00302716
Brown, A. L. (1977). Knowing When, Where, and Now to Remember: A Problem of Metacognition. Lawrence Erlbaum Associates.
Cárcamo, N. (2022). Caracterización del componente metacognitivo asociado a las fases de transición del proceso de modelación matemática (Tesis doctoral no publicada). Universidad Católica del Maule
Desoete, A. (2008). Multi-method assessment of metacognitive skills in elementary school children: How you test is what you get. Metacognition and Learning, 3, 189–206. Doi:10.1007/s11409-008-9026-0. DOI: https://doi.org/10.1007/s11409-008-9026-0
Dignath, C. y Büttner, G. (2018).Teachers’ direct and indirect promotion of self-regulated learning in primary and secondary school mathematics classes – insights from video-based classroom observations and teacher interviews. Metacognition Learning (13), 127–157. https://doi.org/10.1007/s11409-018-9181-x DOI: https://doi.org/10.1007/s11409-018-9181-x
Dignath, C. y Büttner, G. (2008). Components of fostering self-regulated learning among students. A meta-analysis on intervention studies at primary and secondary school level. Metacognition and Learning, 3(3), 231–264. doi:10.1007/s1140 9-008-9029-x DOI: https://doi.org/10.1007/s11409-008-9029-x
Czocher, J. A. (2018). How does validating activity contribute to the modeling process? Educational Studies in Mathematics, 99(2), 137–159. doi:10.1007/s10649-018-9833-4 DOI: https://doi.org/10.1007/s10649-018-9833-4
Flavell, J. H. (1979). Metacognition and Cognitive Monitoring. A New Area of Cognitive-Developmental Inquiry a Model of Cognitive Monitoring. American psychologist, 34(10), 906–911. DOI: https://doi.org/10.1037//0003-066X.34.10.906
Garofalo, J. y Lester, F. K. (1985). Metacognition, Cognitive Monitoring, and Mathematical Performance. Journal for Research in Mathematics Education, 16(3), 163. doi:10.2307/748391 DOI: https://doi.org/10.2307/748391
Geiger, V., Stillman, G., Brown, J., Galbriath, P. y Niss, M. (2018). Using mathematics to solve real world problems: the role of enablers. Mathematics Education Research Journal, 30(1), 7–19. doi: 10.1007/s13394-017-0217-3 DOI: https://doi.org/10.1007/s13394-017-0217-3
Efklides, A. (2001). Metacognitive experiences in problem solving. In A. Efklides, J. Kuhl, & R. M. Sorrentino (Eds.), Trends and prospects in motivation research (pp. 297–323). Dordrecht: Kluwer. DOI: https://doi.org/10.1007/0-306-47676-2_16
Efklides, A. (2008). Metacognition: Defining its facets and levels of functioning in relation to self-regulation and co-regulation. European Psychologist, 13(4), 277–287. doi: 10.1027/1016-9040.13.4.277. DOI: https://doi.org/10.1027/1016-9040.13.4.277
Hidayat, R., Zamri, S. N. A. S. y Zulnaidi, H. (2018). Does Mastery of Goal Components Mediate the Relationship between Metacognition and Mathematical Modelling Competency? Educational Sciences: Theory & Practice, 18(3). doi: 10.12738/estp.2018.3.0108 DOI: https://doi.org/10.12738/estp.2018.3.0108
Iskala, T., Vauras, M., Lehtinen, E. y Salonen, P. (2011). Socially shared metacognition of dyads of pupils in collaborative mathematical problem-solving processes. Learning and Instruction, 21(3), 379–393. doi:10.1016/j.learninstruc.2010.05.002 DOI: https://doi.org/10.1016/j.learninstruc.2010.05.002
Kaiser, G. y Schwarz, B. (2010). Authentic Modelling Problems in Mathematics Education-Examples and Experiences. Journal für Mathematik-Didaktik, 31(1), 51–76. doi:10.1007/s13138-010-0001-3 DOI: https://doi.org/10.1007/s13138-010-0001-3
Lavasani, M., Mirhosseini, F., Hejazi, H. y Davoodi, M. (2011). The effect of self-regulation learning strategies training on the academic motivation and self-efficacy. Procedia-Social and Behavioral Sciences, 29, 627-632. https://dx.doi.org/10.1016/j.sbspro.2011.11.285 DOI: https://doi.org/10.1016/j.sbspro.2011.11.285
Maaß, K. (2006). What are modelling competencies? ZDM, 38(2), 113–142. doi:10.1007/BF02655885 DOI: https://doi.org/10.1007/BF02655885
Nelson, L.J. y Fyfe, E.R. (2019). Metacognitive monitoring and help-seeking decisions on mathematical equivalence problems. Metacognition Learning. 14, 167–187. doi:10.1007/s11409-019-09203-w. DOI: https://doi.org/10.1007/s11409-019-09203-w
Nelson, T. O. y Narens, L. (1990). Metamemory: A theoretical framework and new fndings. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 26, pp. 125–141). New York: Academic Press DOI: https://doi.org/10.1016/S0079-7421(08)60053-5
Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and assessing. Theory into Practice, 41(4), 219–225. doi:10.1207/s15430421tip4104_3. DOI: https://doi.org/10.1207/s15430421tip4104_3
Pintrich, P. R. y de Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33–40. doi:10.1037/0022-0663.82.1.33 DOI: https://doi.org/10.1037//0022-0663.82.1.33
Schoenfeld, A. (1987). What’s all the fuss about metacognition. In A. H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education (pp. 189–215). Hillsdale, New Jersey.
Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. Grouws (Eds.), Handbook for Research on Mathematics Teaching and Learning (pp. 334–370). New York: MacMillan.
Stillman, G. (2011). Applying Metacognitive Knowledge and Strategies in Applications and Modelling Tasks at Secondary School (pp. 165–180). doi:10.1007/978-94-007-0910-2_18 DOI: https://doi.org/10.1007/978-94-007-0910-2_18
Stillman, G., Galbraith, P., Brown, J. y Edwards, I. (2007). A framework for success in implementing mathematical modelling in the secondary classroom. Mathematics: Essential research, essential practice, 2(1), 688-697.
Temur, Ö. D., Özsoy, G. y Turgut, S. (2019). Metacognitive instructional behaviours of preschool teachers in mathematical activities. ZDM - Mathematics Education, 51(4), 655–666. doi: 10.1007/s11858-019-01069-1 DOI: https://doi.org/10.1007/s11858-019-01069-1
Van Velzen, J. H. (2016). Eleventh-Grade High School Students’ Accounts of Mathematical Metacognitive Knowledge: Explicitness and Systematicity. International Journal of Science and Mathematics Education, 14(2), 319–333. doi: 10.1007/s10763-015-9689-3 DOI: https://doi.org/10.1007/s10763-015-9689-3
Vertuan, R. E. y Werle De Almeida, L. M. (2016). Práticas de Monitoramento Cognitivo em Atividades de Modelagem Matemática. Bolema - Mathematics Education Bulletin, 30(56), 1070–1091. doi: 10.1590/1980-4415v30n56a12 DOI: https://doi.org/10.1590/1980-4415v30n56a12
Vorhölter, K. (2019). Enhancing metacognitive group strategies for modelling. ZDM - Mathematics Education. doi: 10.1007/s11858-019-01055-7 DOI: https://doi.org/10.1007/s11858-019-01055-7
Vorhölter, K., Krüger, A. y Wendt, L. (2019). Chapter 2: Metacognition in Mathematical Modeling – An Overview. doi: 10.1007/978-3-030-04432-9_3 DOI: https://doi.org/10.1007/978-3-030-04432-9_3
Wedelin, D., Adawi, T., Jahan, T. y Andersson, S. (2015). Investigating and developing engineering students’ mathematical modelling and problem-solving skills. European Journal of Engineering Education, 40(5), 557–572. doi: 10.1080/03043797.2014.987648 DOI: https://doi.org/10.1080/03043797.2014.987648
Wilson, J. y Clarke, D. (2004). Towards the modelling of mathematical metacognition. Mathematics Education Research Journal, 16(2), 25-48. https://doi.org/10.1007/BF03217394 DOI: https://doi.org/10.1007/BF03217394
Whitebread, D., Bingham, S., Grau, V., Pasternak, D. P. y Sangster, C. (2007). Development of metacognition and self-regulated learning in young children: Role of collaborative and peer-assisted learning. Journal of Cognitive Education and Psychology [online], 6(3), 433-455. www.iacep.cogned.org DOI: https://doi.org/10.1891/194589507787382043
Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective P. R. Pintrich, M. Boekaerts & M. Zeidner (Eds.), Handbook of self-regulation doi: http://lib.myilibrary.com?ID=92724.
Descargas
Derechos de autor 2025 Revista Colombiana de Educación

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.